Know Cancer

forgot password

A Phase I-II Synchrotron Radiation Application to the Treatment of Intracranial Tumors

Phase 1/Phase 2
18 Years
Open (Enrolling)
Brain Cancer

Thank you

Trial Information

A Phase I-II Synchrotron Radiation Application to the Treatment of Intracranial Tumors

Synchrotron radiation (SR) is used to produce monochromatic X-ray photons of very high
intensity with tunable energy in the range of medium energies (0-150 keV). Thus freed of low
energies, the penetration is still important and the types of possible interactions are, in
addition to the Compton Effect in water, the photoelectric effect with any atom much heavier
than those of the living mater represented by the carbon, oxygen, hydrogen, nitrogen and
phosphorus. Photoelectric interactions cause energy deposits much larger than the Compton
Effect, but they require the presence of foreign atoms in living tissue to occur. It may be,
for example iodine, platinum or gadolinium, all these atoms are commonly introduced into the
human body in medical practice as contrast media in radiology, or as anti-neoplastic

The use of SR for radiotherapy, if you want to take advantage of its original properties,
needs the use of a combined treatment: radiation plus medication bringing the heavy atoms
suitable for photo electric effect. Such a concept of combined therapy is widely used in
radiotherapy for decades and was the source of many advances in treatment, some are
presently routine practices (chemo-radiotherapy, photodynamic therapy) other are still under
study as translational research (boron neutron capture therapy). The SR photons at these
"photoelectric" energy band can cause highly cytotoxic damages in tumors especially when
treated with platinum (cisplatin or carboplatin). Indeed, they provide a photoelectric
activation of platinum atoms leading to a massive energy deposition in the DNA of tumors.
This therapeutic principle has been called platinum photoactivation therapy (PAT-plat). It
is particularly suitable for tumors of small to medium volumes, localized small to
medium-depth and suitable for a multi-beam ballistics. Also if there is a possibility of
loading the tumor tissue with high doses of heavy compounds to achieve the combined
treatment in favorable conditions, one would expect a greater therapeutic effect than
conventional treatments. Brain tumors represent a model with these features, thanks to
recent techniques of convection enhanced delivery (CED), which allow a direct infusion of
medication in the tumor.

This work is not conceptually particularly complex although technically sensitive and very
original since ESRF and the Grenoble University Hospital are the only institution which have
made the effort to date to develop in close cooperation a SR line entirely devoted to
biomedical research. There is no other site in the world is this situation, most of the
other centers have either lower energies, or do not have the immediate vicinity of an
academic medical center that can set up the collaboration needed or are too new to have
already reached this experimental level. On the other hand, the technical and material
investments are rather important and as information flow is very free, it was not considered
appropriate at this time to start such research simultaneously in several sites. The ESRF
and the RSRM team ("Rayonnement Synchrotron et Recherche Médicale") are therefore pioneers
in this field and their work is well known worldwide. The 2010 Equipex call for tender
agreed to fund the first table top synchrotron prototype to be designed and assembled in
Orsay : ThomX project at the LAL, laboratoire de l'accélérateur linéaire, our team is
associated to this development. Our technique might spread outside the domain of the great
instruments []..

To carry out the treatment with a satisfactory distribution of the dose of SR, it is
necessary to increase the stopping power of the target tumor by the use of an injection of
iodinated contrast medium at the time of irradiation. This treatment can be applied to any
tumor having good contrast uptake at CTscan and incidentally which may be treated with
platinum. For these reasons, the anatomical location of intracranial human tumors has been
chosen for the study of the application of this treatment with SR monochromatic 80 keV.

The experimental treatment will be a part of standard treatment for brain metastases under
conformal radiotherapy or stereotactic. This irradiation will complement a pan-encephalic
standard irradiation that will be made later, thus providing additional security in terms of

Main objective: To prove the safety and acceptability of treatment with the SR by
medium-term medical follow-up of the patients.

Primary outcome: limiting adverse events will be judged according to international scales
appropriate to the post-irradiation "acute" toxicity: radiation therapy and / or
chemo-radiotherapy NCI-CTC scale; post- irradiation "late" toxicity radiation therapy and /
or chemo-radiotherapy SOMA-LENT scale. The acceptable limit for these two criteria will be
grade <3; performance status (WHO scale).

Secondary objectives:

Evaluate limiting adverse events free survival (EIL) "severe" and "late", related to
treatment.; to evaluate the disease-free survival of the treated site; to evaluate the
intracranial disease-free survival (absence of new metastases); to evaluate the antitumor
efficacy assessed by morphological objective response (complete response and partial
response) to treatment by RECIST.

The objective of this study is to demonstrate the ability to deliver reliable, secure and
efficient radiation by synchrotron radiation under dosimetry conditions similar to the
techniques of advanced radiation therapy with high-energy photons. It will thus be a
"platform" for future experimental test of new concepts of combined treatment with in situ
administration of vectors molecules of heavy atoms by CED.

This is a study without any control group that will evaluate each patient's response
according to RECIST criteria and record limiting adverse events (EIL), acute and late, by an
independent external evaluation. Patients will have an initial phase of radiation at the
ESRF to be followed by an additional irradiation at the University Hospital.

The study will be carried out in several successive steps, each including the number of
patients needed to achieve the proposed objective. The number of patients will be three for
each increment, unless extended for a particular level because of toxicity. Assuming an
uneventful progression of the entire protocol described below, a total of 50 patients are to
be included in this study in two to three years.

These steps are:

- Verification of the reproducibility of the kinetics of iodinated contrast in the tumor.

- Introduction of an iodinated contrast agent IV with a single-dose irradiation by SR.

- Dose escalation (Iodine and SR) and fractionation.

- Introduction of a platinum-injection system with the ultimate optimized RS protocol.

- Optimizing the dose of platinum by an advanced method of administration (CED or double
platinum protocol).

The transition from one step to the next will be dependent on the feasibility of the
previous step, the frequency and severity of side effects occurred at each step of the
protocol. An External Review Committee will monitor the progress of the study and propose
appropriate changes or discontinuation of the trial if appropriate.

The ESRF and the CHU of Grenoble have settled a cooperation agreement since the building of
ESRF in the 80ties to develop medical application of SR: "RSRM". In 2003 the scientific team
of the CHU and the University Joseph Fourier of Grenoble become an INSERM unit devoted to
RSRM with the experimental medical imaging and radiotherapy with SR as a main goal: the
different research axis of the Unit have been organized to contribute to these two domains
and for each a specific department of the CHU has been associated. For the experimental
medical imaging: the neuro-radiology and the cardiology departments; for experimental
radiotherapy: the radiation oncology department of the CHU. That one is tidily associated:
the patients will be selected, recruited, hospitalized, imaged and treated under the
responsibility of the MD and the medical physicists of this CHU department and the patients
will be transported for irradiation at the experimental irradiation room at ESRF for a part
of their irradiation plan. This way, this first attempt of SR application to cancer
treatment is completely embedded in the scientific and technical development of SR at ESRF
which has invested large amount of money since years to modify, upgrade and equipped its
biomedical facility.

This pioneer activity is followed by an industrial development of know how to make possible
the future use of SR if it should issue significant and valuable progress. This effort, so
far, has given way to the ThomX project.

Inclusion Criteria:

- Controlled tumor disease in the primary site and no syndrome metastatic extracranial
threatening short-term

- Presence of 1 to 3 metastases brain symptomatic or not, metachronous primary cancer
of a solid, proven itself by histopathological examination

- In case of multiple lesions sites must be sufficiently spaced so that the PTV can be
in separate horizontal planes

- PS < 2

Exclusion Criteria:

- One or more lesions > 3 cm in diameter on MRI, or infratentorial location

- Performed surgical resection or formal indication

- In progress or finished chemotherapy within the last 4 weeks

- Partial or total irradiation of brain in the past , or total body irradiation

- Presence of a second cancer that would be likely to render uncertain the
identification of the origin of metastases

Type of Study:


Study Design:

Endpoint Classification: Safety Study, Intervention Model: Single Group Assignment, Masking: Open Label, Primary Purpose: Treatment

Outcome Measure:


Outcome Description:

number of participant with adverse event (grade greater than 2), each adverse event will be gradueted according to Common Terminology Criteria for Adverse Events (CTCAE)Version 4.0

Outcome Time Frame:

5 years

Safety Issue:


Principal Investigator

Jacques Balosso, MD PhD

Investigator Role:

Principal Investigator

Investigator Affiliation:

University Hospital, Grenoble


France: Afssaps - Agence française de sécurité sanitaire des produits de santé (Saint-Denis)

Study ID:

DCIC 08 06



Start Date:

June 2012

Completion Date:

June 2019

Related Keywords:

  • Brain Cancer
  • Radiotherapy, Targeted
  • Brain Neoplasms